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1, Formulation

Proposed here is a multi-fluid extension of our multi-component model [1] of unmixed

combustion in explosions. We recognize three fluids: Fuel-F and Air-A forming combustion

Products-P at thermodynamic equilibrium. We consider the inviscid exothermic-flow limit

[2]--where all molecular transport phenomena can be disregarded; thus, the Reynolds

number Re--~ ~o; the Peclet number for both heat and mass diffusion Pe--> ~o; the

Damk6hler number Da --~ ~, and the Mach number Ma > 0. As is typical of combustion in

unmixed systems [3], fuel and air react in stoichiometric proportions o" called Reactants-R.

2. Conservation Equations

In the limit of Re --> ~o, the mixture--m is governed by the Gasclynamic Conservation Laws:

Mass: 0,pm + V. (prou) = 0 (1)

Momentum: Otp,,,U + 7" (PmUU) -- Vpm (2)

Energy: cg, p=E,, + V. (p,,EmU) = e - ua](1 + o’)/5, (3)

where p,u,p and u denote density, internal energy, pressure and velocity vector,

respectively, while Em - um + u. u/2 and [up - UR] represents the energy transformation

from R to P. To evaluate the pressure in fluid K, one needs to know its density and energy

(i.e., Px = Px(Px,UK) where K=F,A,P); these are obtained from Mass-Energy Conservation

Laws for each fluid; at Pe --~ oo they acquire the form

03tPFUF + 7"(RFUFU) = --pFv" U -- UF[3e (4a,b)

A: OtPA + V’(PaU)=-O’/ge ~ CgtPaUA + 7"(PaUAU)=--pAV’U--UACYlO ~ (5a,b)

P: cg, pe + V. (ppu) = (1 + o’)/5, 3,peue + V.(peueu) = -per. u + ue(1+ cr)(6a,b)

m: Pm=PF+PA +Pe & Um=--(PFUF+PAUA +PI’Ue)/Pm (7)

Combustion influences these fields only at the exothermicfront-e, which is a sink (/)e) for 

& A and a’source for P. The equations are integrated by a higher order Godunov method.



Adaptive Mesh Refinement provides enough mesh resolution to capture the mixing structures

on the grid--so no turbulence model is needed [1].

3. Exothermie Front

According to the approximation Da ~ oo, the front [1] is represented as a Dirac delta

function, 8, located at the stoichiometric contour, Xe(te) 

IPoFS(X--Xe,t--t,)

(1_<~ <oo)

- (z = o, oo) (8)
[pa~(x - x~,t - t,)/ty (0 < A,, < 1)

where A,(x, t) - (A - F ratio) / or, which varies throughout the flow field due to mixing.

4. Thermodynamics

Thermodynamic properties of the fluids are displayed in the Le Chatelier diagram (Fig. 1) 

Wg -- (pV)g/Wai t~ UK ~ (u K- UOK)/CAWAi = QK+ k,rWK (9)

In an exothermic ceil, F and A combine in stoichiometric proportions forming a point on

curve-R; combustion transforms that point to one on curve-P. If the system is adiabatic, this

transformation occurs initially at constant pressure and enthalpy (point hp), and at the final

stage of combustion it occurs at constant energy and volume (point uv).

5. Illustration

This Model was used to simulate the combustion of the expanded detonation products from a

1-kg charge of TNT with air in a V = 16.6-m3 chamber. Figure 2 shows the measured

enhancement of pressure due to combustion [4]. The mean (volume-averaged) fluid densities

and energies from the simulation are presented in Figs. 3 and 4. The mass fraction of fuel

consumed is shown in Fig. 5. The calculated pressure history agrees with data (Fig. 6).

6. Conclusion

Combustion in the Multi-Fluid Model is treated material transformations in the Le Chatelier

plane (rather than "heat release" found in traditional models). This is the only way 

construct a thermodynamically-consistent representation of the fluids. The exothermicfront

provides an extraordinarily sharp representation of turbulent combustion fields--which are

normally clouded by a myriad of diffusional effects.
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Fig. 1. Le Chatelier diagram for combustion
of TNT detonation products in air.
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Fig. 2. Mean pressure histories for a 1-kg
TNT explosion in air and N2 (V=17m3).
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Fig. 3. Mean density histories of the fluids.
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Fig. 5. Mass-fraction of fuel consumed.
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Fig. 4. Mean energy histories of the fluids.
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Fig. 6. Pressure history comparison.
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ABSTRACT

A Multi-fluid Model is proposed for turbulent combustion in explosions at infinitely-large
Reynolds, Peclet & Damk6hler numbers. It is based on the gasdynamic conservation laws
for the mixture, augmented mass-energy conservation laws for each fluid (fuel-F, oxidizer-A
and products-P). Combustion is treated as material transformations in the Le Chatelier
plane--rather than "heat release" found in traditional models. This allows one to construct
thermodynamically-consistent representations of the fluids. Such transformations occur at an
exothermicfront--which represents, simultaneously, a sink for F & A and source of P. The
front is represented by a Dirac delta function at the stoichiometric contour in the turbulent
field. This Model then provides an extraordinarily clear picture of turbulent combustion
fields, which are normally clouded by a myriad of diffusional effects.

*This work was performed under the auspices of the U.S. Department of Energy
by the University of California Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48.


